Polyspace® Products for Ada 6
Getting Started Guide

) MathWorks

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Polyspace® Products for Ada Getting Started Guide
© COPYRIGHT 1997-2011 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2008 First printing
October 2008 Second printing
March 2009 Third printing
September 2009 Online only
March 2010 Online only

September 2010 Online only
April 2011 Fourth printing

Revised for Version 5.1 (Release 2008a)
Revised for Version 5.2 (Release 2008b)
Revised for Version 5.3 (Release 2009a)
Revised for Version 5.4 (Release 2009b)
Revised for Version 5.5 (Release 2010a)
Revised for Version 6.0 (Release 2010b)
Revised for Version 6.1 (Release 2011a)

Introduction to Polyspace Products for
Verifying Ada Code

1

Product Overviewttt 1-2
Overview of Polyspace Verification 1-2
The Value of Polyspace Verification 1-2

Product Components 1-5
Polyspace Productsfor Ada 1-5
Polyspace Verification Environment 1-5
Other Polyspace Componentscccuvvuvu.... 1-7

Installing Polyspace Products 1-9
Finding the Installation Instructions 1-9
Obtaining Licenses for Polyspace® Client for Ada and

Polyspace® Server for Ada Products 1-9

Working with Polyspace Software 1-10
Basic Workflow i 1-10
The Workflow in This Guide 1-11

Learning Moret innnnn. 1-13
Product Help i, 1-13
MathWorks Online iiiiinnnn.. 1-13

Related Products i, 1-14
Polyspace Products for Verifying C/C++ Code 1-14

Polyspace Products for Linking to Models 1-14

vi

Setting Up a Polyspace Project

2

About the Setting Up a Project Tutorial 2-2
OVeIVIBW o ittt ettt et e e e 2-2
Example Files i 2-2

Creating a New Project 2-3
What Is a Project? 2-3
Preparing Project Folders 2-3
Opening the Polyspace Verification Environment 2-4
Creating a New Project to Verify an Ada Package 2-7

Running a Verification

3

About This Tutorial 3-2
OVeIVIBW o it i ettt ettt e 3-2
Before You Start i, 3-3

Preparing for Verification 3-4
Opening the Project 3-4
Specifying Source Files to Verify 3-4

Launching Server Verification from Project

Managerttiiiie 3-6
Starting the Verification u... 3-6
Monitoring the Progress of the Verification 3-7
Removing Verification Results from the Server 3-11
Troubleshooting a Failed Verification 3-12
Using Polyspace In One Click to Launch Verification .. 3-15
Overview of Polyspace In One Click 3-15
Setting the Active Project 3-15
Sending the Files to Polyspace Software 3-17

Contents

Launching Client Verification from Project
Manageruiiiiii
Starting the Verification
Monitoring the Progress of the Verification
Completing Verificationccuuiuieeeeo...
Stopping the Verification

Reviewing Verification Results

4 |

About the Reviewing Verification Results Tutorial
OV T VIEW ottt ittt ettt e et e
Before You Start e

Opening Verification Results
Opening Run-Time Checks Perspective
Opening Verification Results

Exploring Run-Time Checks Perspective
L0 =) T 1=
Reviewing Procedural Entities

Reviewing Results
Using Review Assistant
Reviewing All Checks,
Reviewing Example Checks
Filtering Checks

Reviewing Results in Assistant Mode
What Is Assistant Mode?,
Switching to Assistant Mode
Selecting the Methodology and Criterion Level
Exploring Methodology for Ada
Reviewing Checks
Defining a Custom Methodology

Generating Reports of Verification Results
Polyspace Report Generator Overview

4-2
4-2
4-2

4-3
4-3
4-3

4-4
4-4
4-5

vii

Generating Report for example.adb 4-26

Index

viii Contents

Introduction to Polyspace
Products for Verifying Ada

Code

® “Product Overview” on page 1-2

® “Product Components” on page 1-5

¢ “Installing Polyspace Products” on page 1-9

e “Working with Polyspace Software” on page 1-10
® “Learning More” on page 1-13

e “Related Products” on page 1-14

Introduction to Polyspace® Products for Verifying Ada Code

1-2

Product Overview

In this section...

“Overview of Polyspace Verification” on page 1-2

“The Value of Polyspace Verification” on page 1-2

Overview of Polyspace Verification

Polyspace® products verify C, C++, and Ada code by detecting run-time errors
before code is compiled and executed. Polyspace verification uses formal
methods not only to detect errors, but to prove mathematically that certain
classes of run-time errors do not exist.

To verify the source code, you set up verification parameters in a project, run
the verification, and review the results. A graphical user interface helps you
to efficiently review verification results. Results are color-coded:

¢ Green — Indicates code that never has an error.

®* Red — Indicates code that always has an error.

¢ Gray — Indicates unreachable code.

¢ Orange — Indicates unproven code (code that might have an error).

The color-coding helps you to quickly identify errors and find the exact

location of an error in the source code. After you fix errors, you can easily run
the verification again.

The Value of Polyspace Verification
Polyspace verification can help you to:

¢ “Ensure Software Reliability” on page 1-3
® “Decrease Development Time” on page 1-3

¢ “‘Improve Development Process” on page 1-4

Product Overview

Ensure Software Reliability

Polyspace software ensures the reliability of your Ada applications by proving
code correctness and identifying run-time errors. Using advanced verification
techniques, Polyspace software performs an exhaustive verification of your
source code.

Because Polyspace software verifies all possible executions of your code, it
can identify code that:

® Never has an error
e Always has an error
® Js unreachable

e Might have an error

With this information, you can be confident that you know how much of your
code is run-time error free, and you can improve the reliability of your code
by fixing the errors.

Decrease Development Time

Polyspace software reduces development time by automating the verification
process and helping you to efficiently review verification results. You can use
it at any point in the development process. However, using it early in coding
phases allows you to find errors when they are less costly to fix.

You use Polyspace software to verify Ada source code before compile time.
To verify the source code, you set up verification parameters in a project,
run the verification, and review the results. This process takes significantly
less time than using manual methods or tools that require you to modify
code or run test cases.

Color-coding of results helps you to quickly identify errors. You will spend
less time debugging because you can see the exact location of an error in the
source code. After you fix errors, you can easily run the verification again.

Using Polyspace verification software helps you to use your time effectively.

Because you know which parts of your code are error-free, you can focus on
the code that has definite errors or might have errors.

1-3

Introduction to Polyspace® Products for Verifying Ada Code

1-4

Reviewing the code that might have errors (orange code) can be
time-consuming, but Polyspace software helps you with the review process.
You can use filters to focus on certain types of errors or you can allow the
software to identify the code that you should review.

Improve Development Process

Polyspace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other packages in the same application.

Polyspace verification software supports code verification throughout the
development process:

¢ An individual developer can find and fix run-time errors during the initial
coding phase.
® Quality assurance can check overall reliability of an application.

¢ Managers can monitor application reliability by generating reports from
the verification results.

Product Components

Product Components

In this section...

“Polyspace Products for Ada” on page 1-5

“Polyspace Verification Environment” on page 1-5

“Other Polyspace Components” on page 1-7

Polyspace Products for Ada

The Polyspace products for verifying Ada code are:

Polyspace® Client™ for Ada
Polyspace® Server™ for Ada

Polyspace Client for Ada software is the management and visualization tool of
Polyspace products. You use it to submit jobs for execution by the Polyspace
Server, and to review verification results.

Polyspace Server for Ada software is the computational engine of Polyspace
products. You use it to run jobs posted by Polyspace clients, and to manage
multiple servers and queues.

Polyspace Verification Environment

The Polyspace verification environment (PVE) is the graphical user interface
of the Polyspace Client for Ada software. You use the Polyspace verification
environment to create Polyspace projects, launch verifications, and review
verification results.

For Ada verification, you use two perspectives of the Polyspace verification
environment:

® “Project Manager Perspective” on page 1-6

¢ “Run-Time Checks Perspective” on page 1-6

Introduction to Polyspace® Products for Verifying Ada Code

1-6

Project Manager Perspective
The Project Manager perspective allows you to create projects, set verification
parameters, and launch verifications.

PolySpace C:\Polyspace\polyspace project\example project.cfg - O il

File Edit Run Review Options Window Help
% \5 H| & x| E@ | % "] | @) | Search in: | Configuration View 'l LI yal '| |E}Pr0}ect Manager -* Coding Rules -2 Run-Time Checks

P Run €3 Stop | Current result folder: | "Automatic” |
=" Project Browser 2% | £ Configuration a2
BLcG@|r 12
ERE]cxample_project [Ada 95] Name Value Internal name
: I Source Analysis options
3 Indlude El-General
B3 Verification_(1) Send to PolySpace Server = -server
- Source ~-Add to results repository [m] -add-to-results-repository
E\E) Configuration ~Project version 1.0 -verif-version
“-[Z] example_project ~Keep all preliminary results files [“keep-all-files
{3 Result E--Report Generation r
--Report template name C:\PolySpace'\FolySpace_Common'\Reportd) ... |-report-template
g “-Qutput format RTF o -report-output-format
“| - Target/Compilation
| #-Compliance with standards
[-PolySpace inner settings
[-Precision
-Multitasking
Progress Monitor o &
Output Summary| @ Full Log | B verification Statistics Progress Monitor
0% Ready BB ory Heap used: 13059K, total: 126848K

You use the Project Manager perspective in the tutorial in Chapter 2, “Setting
Up a Polyspace Project”.

Run-Time Checks Perspective
The Run-Time Checks perspective allows you to review verification results,
comment individual checks, and track review progress.

Product Components

Selected check

Caoding review

Polyspace - C:\ADA-R2011a-15\Examples\Demo_Ada\Verification_1\Re sult_1\RTE_px_Demo_Ada_LAST_RESULTS.rte

Fle Edit Run Review Options Window Help

B S o ﬂ‘ 9 °|¥ EE) U%|% °| @-‘|Search:l——;l,® ™ Case sensitive [~ Whole word v|

AEB 1|

=gl x|

RIYE | ’_7 | Efv | ':_7 | 5_7 Cading review progress
Procedural entities [# [3¢| %[« [uir example.adb / FROCEDURE_ZDV / fine 45 / column 30 a [||Red 2DV justified / to justify o/1 0
1 Red justified / to justify 0/12 i
|z Dermo A= il fe = = Procedure_Stub(fleat({y) § float(x)); —- x is equal to zerc | Gray justified / to justify 0/27 0
[H-ADA L o ngrange justified / to justify 0/23 [i]
[} FKDATA 14 | z (Classification _ Status Justified Comment | Software reliability indicatar 192/254 75
- PKDATASSPEC i = BC
[FRTASKING 1] 3]sz 1g
Error : float division by zero occurs
FKTASKINGSSFEC " e T e e e e e -
B-PRUTIL 5] 4 ‘[r <. Check Details | - Expanded Source Code | {8 Review Statistics
FKUTILSSPEC 18
[RANDOM z | 1 ~ |+ Call Hierarchy S
- RANDCMSSPEC || example.adb 4b B ||+
=] B[k 4 :l Calls Line
| 38 procedure Procedure_zdv is
39 x @ integer := 0; b RUNTIME_ERRCRFROCEDY 45
1|2 12 40 ¥ i integer := 10; I | 4 RUNTIME_ERRORMAINRTE[211
3 ® a1 begin
x 4z for i in -2..2 loop | I
. - 43 X oi= x4+ i | ———r 1
. o a4 end loop; 1 " Variable Access i
. o 45 Procedure_Stub [floatiy) / float{x)); -- x is equal to zera G
‘_:! a6 end Procedure_zdv;
a7 =
dy 48 —- Here we demonstrate PolySpace Verifier's ability to trace . il
ﬁv a9 —- dynamic arithmetic properties across a recursion loop. PIDATA.SCALE
1 5| 50 _ FKTASKING CURRENT_DATA
L4 51 -- The pain function Recursipn() takes a parameter, increments it, PKTASKING TREGULATE TMP |
{,;L Run-Time Checki J 2 Assistant Checks| | 52 -- then divides by it. This|sequence of actions loops through LI >
‘ poe Demo_Ada Source file: example.adb RUNTIME_ERROR.PROCEDURE_STUB Line: 26 Column: 3 |
Procedural entities
Source code Wariables Call tree

You use the Run-Time Checks perspective in the tutorial in Chapter 4,
“Reviewing Verification Results”.

Other Polyspace Components

In addition to the Polyspace verification environment, Polyspace products
provide several other components to manage verifications, improve
productivity, and track software quality. These components include:

® Polyspace Queue Manager Interface (Spooler)

Polyspace in One Click
¢ Polyspace Metrics Web Interface

1-7

Introduction to Polyspace® Products for Verifying Ada Code

1-8

Polyspace Queue Manager Interface (Polyspace Spooler)

The Polyspace Queue Manager (also called the Polyspace Spooler) is the
graphical user interface of the Polyspace Server for Ada software. You use the
Polyspace Queue Manager Interface to move jobs within the queue, remove
jobs, monitor the progress of individual verifications, and download results.

i PolySpace Queue Manager Interface

Cperations Help

1D | Authar
Yaur_name

Application Fesults folder CPU| Status | Date [L
Example_Project C:hpolyspace projecthresults anze running 008,

You use the Polyspace Queue Manager in the tutorial “Launching Server
Verification from Project Manager” on page 3-6.

Polyspace in One Click

Polyspace in One Click is a convenient way to verify multiple files using the
same set of options.

After creating a project with the options you want, you can use Polyspace in
One Click to designate that project as the active project, and then send source
files to Polyspace software for verification with a single mouse click.

You use Polyspace in One Click in the tutorial “Using Polyspace In One Click
to Launch Verification” on page 3-15.

Polyspace Metrics Web Interface

Polyspace Metrics is a web-based tool for software development managers,
quality assurance engineers, and software developers. Polyspace Metrics
allows you to evaluate software quality metrics, and monitor changes in code
metrics and run-time checks through the lifecycle of a project.

For information on using Polyspace Metrics, see “Software Quality with
Polyspace Metrics” in the Polyspace Products for Ada User’s Guide.

Installing Polyspace® Products

Installing Polyspace Products

In this section...

“Finding the Installation Instructions” on page 1-9

“Obtaining Licenses for Polyspace® Client for Ada and Polyspace® Server
for Ada Products” on page 1-9

Finding the Installation Instructions

The tutorials in this guide require both Polyspace Client for Ada and
Polyspace Server for Ada. Instructions for installing Polyspace products are
in the Polyspace Installation Guide. Before running Polyspace products, you
must also obtain and install the necessary licenses.

Obtaining Licenses for Polyspace Client for Ada and
Polyspace Server for Ada Products

See “Polyspace License Installation” in the Polyspace Installation Guide for
information about obtaining and installing licenses for Polyspace products.

1-9

1 introduction to Polyspace® Products for Verifying Ada Code

Working with Polyspace Software

In this section...

“Basic Workflow” on page 1-10

“The Workflow in This Guide” on page 1-11

Basic Workflow

The basic workflow for using Polyspace software to verify Ada source code is:

Setup project

Verify code

3
Review verification results

In this workflow, you:

1 Use the Project Manager perspective to set up a project file.

2 Verify code on a server or client.

You can use the Project Manager perspective to start the verification or
you can select files from a Microsoft® Windows® folder and send them to
Polyspace software for verification. For verifications that run on a server,
you can use the Polyspace Queue Manager Interface (Polyspace Spooler) to
manage the verifications and download the results to a client.

3 Use the Run-Time Checks perspective to review verification results.

1-10

Working with Polyspace® Software

The Workflow in This Guide

The tutorials in this guide take you through the basic workflow, including the
different options for running verifications. The workflow that you will follow
in this guide is:

Create new project

Verify code

-

3
Review verification results

In this workflow, you will:

1 Create a new project that you can use for the other steps in the workflow.
This step is in the tutorial Chapter 2, “Setting Up a Polyspace Project”.
2 Verify a single package using demo Ada source code.

This step is in the tutorial Chapter 3, “Running a Verification”. In this
tutorial, you will verify the same package using three different methods
for running a verification. You will:

e Use the Project Manager perspective to start a verification that runs
on a server.

e Use Polyspace In One Click to start a verification that runs on a server.

e Use the Project Manager perspective to start a verification that runs
on a client.

3 Review the verification results.

1-11

1 introduction to Polyspace® Products for Verifying Ada Code

This step is in the tutorial Chapter 4, “Reviewing Verification Results”.

1-12

Learning More

Learning More

In this section...

“Product Help” on page 1-13
“MathWorks Online” on page 1-13

Product Help

To access the help that came with your installation, select Help > Help or
click the Help icon in the Polyspace window.

To access the online documentation for Polyspace products, go to:
/www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html
MathWorks Online

For additional information and support, see:

www.mathworks.com/products/polyspace

1-13

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html
http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

Introduction to Polyspace® Products for Verifying Ada Code

1-14

Related Products

In this section...

“Polyspace Products for Verifying C/C++ Code” on page 1-14

“Polyspace Products for Linking to Models” on page 1-14

Polyspace Products for Verifying C/C++ Code

For information about Polyspace products that verify C/C++ code, see the
following:

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/

Polyspace Products for Linking to Models

For information about Polyspace products that link to models, see the
following:

http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/
http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

Setting Up a Polyspace
Project

e “About the Setting Up a Project Tutorial” on page 2-2

e “Creating a New Project” on page 2-3

2 Setting Up a Polyspace® Project

About the Setting Up a Project Tutorial

In this section...

“Overview” on page 2-2

“Example Files” on page 2-2

Overview

You must have a project file before you can run a Polyspace verification of
your source code. In this tutorial, you will create a project that you can use to
run verifications in later tutorials.

Example Files

In this tutorial, you will verify the package example.adb that comes with the
Polyspace installation CD. You can learn more about the files and folders
required for this tutorial in “Preparing Project Folders” on page 2-3.

Creating a New Project

Creating a New Project

In this section...

“What Is a Project?” on page 2-3
“Preparing Project Folders” on page 2-3
“Opening the Polyspace Verification Environment” on page 2-4

“Creating a New Project to Verify an Ada Package” on page 2-7

What Is a Project?

In Polyspace software, a project is a named set of parameters for verification
of your software project’s source files. A project includes:

e Source files

Include folders

Analysis options

® One or more Verifications, each of which include:

= Source (specific versions of source files used in the verification)

= Configuration (specific set of analysis options used for the verification)
= Verification results

You can create your own project or use an existing one. You can create and
modify a project using the Project Manager perspective.

In this tutorial, you create a new project and save it as a configuration file
(.cfg).

Preparing Project Folders

Before you start verifying Ada code with Polyspace software, you must know
the locations of the Ada source package and any other specifications upon
which it may depend either directly or indirectly. You must also know where
you want to store the verification results.

2-3

2 Setting Up a Polyspace® Project

2-4

For each project, you decide where to store source files and results. For
example, you can create a project folder and then create separate folders for

the source files, include files, and results within the project folder.
For this tutorial, prepare a project folder as follows:

1 Create a project folder named polyspace _project.

2 Open polyspace_project, and create the following folders:
® sources
® includes

®* results
3 Copy the file example.adb and example.ads from
Install folder\Examples\Demo_Ada_Single-File\sources
to
polyspace_project\sources
where Install folder is the installation folder.
4 Copy all files from
Install folder\Examples\Demo_Ada_Single-File\sources
to

polyspace_project\includes

Opening the Polyspace Verification Environment
Use the Polyspace verification environment to create projects, start

verifications, and review verification results.
To open the Polyspace verification environment:

1 Double-click the Polyspace icon.

Creating a New Project

2 If you have both Polyspace Client for C/C++ and Polyspace Client for Ada
products on your system, the PolySpace Language Selection dialog box
opens.

PolySpace Language Selection |

Select a language

" PolySpace for CiC++

¥ PolySpace for Ada

OK Cancel

¢ Select PolySpace for Ada, and click OK.

The Polyspace verification environment opens.

2 Setting Up a Polyspace® Project

2-6

Specify analysis options

Specify source files and include folders

_|ol x|
= d| & 2 % £ @ | @ Search in: | Configuration View | ¥ | VPR I Project Manager ~* Coding Rules - Run-Time Checks
Current rsult folder: Current configuration:
2
B
Output Summary B Full Log & verfication Statistics Progress Monitor
0% Ready Iy Heap used: 16964, total: 126720K

Monitor progress and view log

By default, the Polyspace Verification Environment displays the Project
Manager perspective. The Project Manager perspective has three main
sections.

Use this For...
section...

Project Specifying:
Browser ® Source files

(upper-left) e Include folders

e Results folder

Configuration | Specifying analysis options
(upper-right)

Output Monitoring the progress of a verification, and viewing
(lower-right) status, log messages, and general verification statistics.

Creating a New Project

You can resize or hide any of these sections. You learn more about the Project
Manager perspective later in this tutorial.

Creating a New Project to Verify an Ada Package

You must have a project, saved with file type .cfg, to run a verification. In
this part of the tutorial, you create a new project to verify example.adb.

You create a new project by:

® “Opening a New project” on page 2-7

e “Specifying the Source Files and Include Folders” on page 2-9
e “Specifying the Analysis Options” on page 2-11

® “Specifying Source Files to Verify” on page 2-12

® “Saving the Project” on page 2-13

Opening a New project
To open a new project for verifying example.adb:
1 Select File > New Project.

The PolySpace Project: Define Properties dialog box appears:

2 Setting Up a Polyspace® Project

2-8

PolySpace Project: Define Properties il

Project definition and location

Project name: Iexample_project

Date: |01/06/2010

Version: Il.D

Author: Iusername|

[~ Default location

Location: IC:\Polyspace\example_projec’c\ ;‘I

~Project language
" Ada 83
i« Ada 95

Back | Mext | Finish | Cancel |

2 In the Project name field, enter example project.

3 Clear the Default location check box.

Note Clearing the Default location check box allows you to specify

the location of your project files. In this tutorial, you change the default
location to the project folder that you created in “Preparing Project Folders’
on page 2-3. Changing the default location makes it easier to specify source
files and include folders.

i

4 In the Location field, enter or navigate to the project folder that you
created earlier.

In this example, the project folder is C: \PolySpace\polyspace_project.
5 Under Project language, click Ada95.

6 Click Finish. The example project opens in the Polyspace verification
environment.

Creating a New Project

PolySpace C:\Polyspace\polyspace_project\example_project.cfg

File Edit Run Review Options Window Help

I [

H e od ‘ 4 B2 B | L @ @ searchin: Configuration Views | ¥ | j ,@ A | | () Project Manager - Coding Rules -2 Run-Time Checks
PRun & Stop | Current result folder: [Automatic’ =
“ Project Browser &2 |'E Configuration an
BLci@++ 12
SRl cxample_project [Ada 951 Name Value Internal name
Analysis options
El-General
-3 Verification_(1) Send to PolySpace Server cd -server
-y Source ~Add to results repository [m] -add-to-results-repository
EE) Configuration ~Project version 1.0 -verif-version
/3 example_project -Keep all preliminary results files [m] “keep-all-files
{3 Result E-Report Generation [m]
--Report template name C:\FolySpace\PolySpace_Common'\ReportG| ... |-report-template
E - Qutput format RTF B -report-output-format
| - Target/Compilation
| [H-Compliance with standards
#-PolySpace inner settings
#-Pracision
F-Multitasking
Progress Monitor oRx
Output Summary ‘ @ Full Log | £ verification Statistics Progress Monitor
0% Ready ry Heap used: 13059K, total: 126848K

Specifying the Source Files and Include Folders
To specify the source files and include folders for the verification of
example.adb:

1 In Project Browser, select the Source folder.

2 Click the Add source icon i in the upper left the Project Browser.

.The PolySpace Project: Add Source Files and Include Folders dialog box
appears.

2-9

2 Setting Up a Polyspace® Project

2-10

PolySpace Project: Add Source Files and Include Folders il
Look in: IF‘ polyspace_project ﬂ 5= = ¥ Add Recursively i
E (== includes B} example_proje
(7= sources i-IC3 Source
My Recent ot 22 Include
Documents = Verfication_(1)
€
Desktop
My
Documents
-
My
Computer
.
@
My Metwork
Flaces
File name: | Bl Add source
Files of type: [(+.ada),(=.adb) and (=.ads) fies = B ritincude | | [I m
Back | Wext | Finish | ‘

3 The project folder polyspace_project should appear in the Look in
drop-down box. If it does not, navigate to that folder.

4 Select the folder sources. Then click Add source.

The files, example.adb and example.ads, appear in the Source tree for
example_project.

5 Select the includes folder. Then click Add Include.
The includes folder appears in the Include tree for example project.

6 Click Finish to apply the changes and close the dialog box.

The Project Browser now looks like the following:

Creating a New Project

S ——
SSEIC A TR
=) example_project [Ada 95]
-3 Source

| B+ sources

----- | £ example.adb
|5 example.ads

ERET nclude
B3 ..Aincludes
-3 Verification_(1)

oy Source
=3 Configuration
& example_project

-----) Result

Specifying the Analysis Options

The analysis options in the upper-right section of the Project Manager
perspective include parameters that Polyspace software uses during the
verification process. For more information about analysis options, see
“Options Description” in the Polyspace Products for Ada Reference.

To specify the analysis options for this tutorial:

1 Expand the Target/Compilation section.

2 From the Operating system target for Standard Libraries
compatibility drop-down menu, select no-predefined-OS.

3 Keep the default values for all other options.

The analysis options now look like this.

2-11

2 Setting Up a Polyspace® Project

2-12

12
Name Value Internal name
Analysis options
El-General
~-Send to PolySpace Server v -server
-Add to results repository r -add-to-results-repository
--Project version 1.0 -verif-version
-Keep all preliminary results files r -keep-all-files
--Report Generation -
eport template name C:\PolySpace\PolySpace_Common\ReportG ... |-report-template
B utput format RTF he -report-output-format
=1
B -Target processor type i386 hd -target
--Operating system target for Standard Librarigno-predefined-0S hd -05-target
-Defined Preprocessor Macros ... |-D
~-Undefined Preprocessor Macros ... |-U
- Files extensions *.ad[sa] -extensions-for-spec-files
- Command/script to apply before start of the ... |-pre-analysis-command
- Commandyscript to apply after the end of the ... |-post-analysis-command
- Compliance with standards
[+-PolySpace inner settings
[+-Precision
[~ Multitasking

Specifying Source Files to Verify

Before you can launch a verification, you must specify the files in the project
that you want to verify. In example_ project, there are two files to verify.

To specify source files for a verification:

1 In the Project Browser Source tree, right-click the folder
example_project[Ada 95] > Source > sources, which contains the
source files example.adb and example.ads.

2 From the context menu, select Copy Source File to > Verification_(1).

The source files example.adb and example.ads appear in the Source tree
of Verification_ (1).

Creating a New Project

“" Project Browser

K|+ ¥
Er_ﬂj example_project [Ada 95]

----- | L example.adb

|5 example.ads
-3 Include
{3 ..\includes
-3 Verification_(1)

B3 Seurce

. B-E3 sources

----- | & example.adh

- | example.ads
-3 Configuration
E [example_project
[Result

Saving the Project
To save the project, select File > Save project.

2-13

2 Setting Up a Polyspace® Project

2-14

Running a Verification

e “About This Tutorial” on page 3-2

® “Preparing for Verification” on page 3-4

¢ “Launching Server Verification from Project Manager” on page 3-6
¢ “Using Polyspace In One Click to Launch Verification” on page 3-15

¢ “Launching Client Verification from Project Manager” on page 3-21

3 Running a Verification

3-2

About This Tutorial

In this section...

“Overview” on page 3-2

“Before You Start” on page 3-3

Overview

Once you have created the project example.cfg as described in “Creating a
New Project” on page 2-3, you can run the verification.

You can run a verification on a server or a client.

Use...

For...

Server

® Best performance

Large files (more than 800 lines of code including comments)

Multitasking

Client

® An alternative to the server when the server is busy

Small files with no multitasking

Note Verification on a client takes more time. You might
not be able to use your client computer when a verification is
running on it.

You can start a verification using either the Project Manager or Polyspace In
One Click. With either method, the verification can run on a server or a client.

About This Tutorial

Use... For...

Project Manager A basic way to start a verification.

You specify the source files in the project file.
With the project file open, you click a button to
start the verification.

Polyspace In One Click | A convenient way to start the verification of
several files which use the same verification
options.

Once you specify the project file containing the
verification options, you specify the source files
by selecting them from a Microsoft Windows
folder. You start the verification by sending the
selected files to Polyspace software.

In this tutorial, you learn how to run a verification on a server and on a
client, and you learn how to start a verification using the Project Manager
and Polyspace In One Click. You verify the package example.adb three times
using a different method each time. You use:

1 Project Manager to start a verification that runs on a server.
2 Polyspace In One Click to start a verification that runs on a server.

3 Project Manager to start a verification that runs on a client.

Each verification stores the same results in your project. You review these
results in the tutorial Chapter 4, “Reviewing Verification Results”.

Before You Start

Before you start this tutorial, you must complete Chapter 2, “Setting Up a
Polyspace Project”. You use the folders and project file, example.cfg, from
that tutorial to run the verifications.

3-3

3 Running a Verification

Preparing for Verification

In this section...

“Opening the Project” on page 3-4

“Specifying Source Files to Verify” on page 3-4

Opening the Project

To run a verification, you must have an open project file. For this tutorial, you
use the project file example.cfg that you created in Chapter 2, “Setting Up a
Polyspace Project”. Open example.cfg if it is not already open.

To open example.cfg:

1 If the Polyspace verification environment is not already open, double-click
the Polyspace icon.

2 Select File > Open project.

The Open a PolySpace project file dialog box opens.
3 In Look in, navigate to polyspace_project.
4 Select example project.cfg.

5 Click Open to open the file and close the dialog box.

Specifying Source Files to Verify

Each Polyspace project can contain multiple verifications. Each of these
verifications analyze a specific set of source files using a specific set of
analysis options.

Therefore, before you can launch a verification, you must specify which files in
your project you want to verify. In the example project used in this tutorial,
there is only one file to verify.

To copy source files to a verification:

Preparing for Verification

1 In the Project Browser Source tree, right-click the folder
example_project[Ada 95] > Source > sources, which contains the
source files example.adb and example.ads.

2 From the context menu, select Copy Source File to > Verification_(1).

The source files example.adb and example.ads appear in the Source tree
of Verification_(1).

0 xj|ﬁ’D|t +

E-{~} example_project [Ada 95]
-3 Source
-
----- r': example adb
E example.ads
E+ E:' Include
- 3 L \includes
= = Vverification_(1)
[f.| = Source
= B' sources
------ | & example.adb
H . | example.ads
E‘ Configuration
. [example_project

3 Running a Verification

3-6

Launching Server Verification from Project Manager

In this section...

“Starting the Verification” on page 3-6

“Monitoring the Progress of the Verification” on page 3-7
“Removing Verification Results from the Server” on page 3-11

“Troubleshooting a Failed Verification” on page 3-12

Starting the Verification

In this part of the tutorial, you run the verification on a server.

To start a verification that runs on a server:

1 In the Configuration view, under Analysis options > General, select

the Send to Polyspace Server check box.

Name Value Internal name |
Analysis options
El-General
----- Send to PolySpace Server v -server
----- Add to results repository [-add-to-results-repository

R
2 Click the Run button m on the Project Manager toolbar.

Note If you see the message Verification process failed, click OK
and go to “Troubleshooting a Failed Verification” on page 3-12.

The verification has three main phases:

a Checking syntax and semantics (the compile phase). Because Polyspace
software is independent of any particular Ada compiler, it ensures that
your code is portable, maintainable, and complies with Ada standards.

b Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see

Launching Server Verification from Project Manager

“Generate a main” in the “Options Description” chapter of Polyspace
Products for Ada Reference.

¢ Analyzing the code for run-time errors and generating color-coded
diagnostics.

The compile phase of the verification runs on the client. When the compile
phase finishes:

® You see the message queued on server at the bottom of the Project
Manager perspective. This message indicates that the part of the
verification that takes place on the client is complete. The rest of the
verification runs on the server.

¢ A message in Output Summary gives you the identification number
(Analysis ID) for the verification.

3 For information on any message in the log, click the message.

Monitoring the Progress of the Verification

There are two ways to monitor the progress of a verification:

¢ Using the Project Manager — allows you to follow the progress of the
verifications you submitted to the server, as well as client verifications.

¢ Using the Queue Manager (Spooler) — allows you to follow the progress
of any verification job in the server queue.

Monitoring Progress Using Project Manager

You can monitor the progress of your verification by viewing the progress
monitor and logs at the bottom of the Project Manager perspective.

Compile: 100% CDFA: 100% Levell: 100% Level2: 100% Level3: 100% Level4: 100% Total
00:00:01 00:00:09 00:00:14 00:00:10 00:00:15 00:00:10 00:00:59

Output Summary | @ Full Log | B verification Statistics Progress Manitor

The progress monitor highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

3-7

3 Running a Verification

3-8

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the
log display area at the bottom of the Project Manager window. Follow the
next steps to view the logs:

1 Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search
box and clicking the left arrow to search backward or the right arrow to
search forward.

2 Click the Verification Statistics tab to display statistics, such as analysis
options, stubbed functions, and the verification checks performed.

3 Click the Refresh button _:
progresses.

il to update the display as the verification

4 Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification. You can search the log by entering search terms
in the Search box and clicking the left arrow to search backward or the
right arrow to search forward.

Monitoring Progress Using Queue Manager

You monitor the progress of the verification using the Polyspace Queue
Manager (also called the Spooler).

To monitor the verification of Example Project:

1 In the Run-Time Checks perspective toolbar, click the Polyspace Queue
Manager icon E The Polyspace Queue Manager Interface opens.

i PolySpace Queue Manager Interface

Ciperations Help

1D | Aathor Application Rezults folder CPU| Status | Date |L
vour_name Example_Project 3

Cihp ace_projectiresults anze running 008,

Launching Server Verification from Project Manager

2 Point anywhere in the row for ID 1.
3 Right-click to open the context menu for this verification.

Follow Progress. ..

Wiens Log File,

Download Results.,

Download Results And Remove From Quede. ..

Move Daoven In Queue

Skop...
Stop And Download Results,
Stop And Remove From Queue. .,

Remaowve From Queue, .,

4 Select View log file.

A window opens displaying the last one-hundred lines of the verification.

8 view Log File x|
Generating results in a spreadsheet format in C:\Polyv|a

Generation complete

R R R R R R R W W
h A

*#%% SBoftware Safety Analysis Level 4 done

h A

R R R R R R R W W
Ending at: Jun 4, 2010 11:2&:31

User time for pass4: 00:00:03.%2 (3.%9real, 3.9u + 0s

Generating remote file
Done
User time for polyspace-ada: 00:01:39 (99.2real, 99.2u -

R

R

Kl I

Close |

*%% End of PolySpace Verifier analysis J
=l

3-9

3 Running a Verification

5 Click Close to close the window.

6 Select Follow Progress from the context menu. The Progress Monitor
opens.

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The progress monitor
highlights the current phase in blue and displays the amount of time and
completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the
log display area at the bottom of the Project Manager window. Follow the
next steps to view the logs:

e (Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search
box and clicking the left arrow to search backward or the right arrow to
search forward.

e (Click the Verification Statistics tab to display statistics, such
as analysis options, stubbed functions, and the verification checks
performed.

e (Click the Refresh button
progresses.

il to update the display as the verification

¢ (Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification. You can search the log by entering search
terms in the Search box and clicking the left arrow to search backward
or the right arrow to search forward.

7 Select File > Quit to close the progress window.
8 Wait for the verification to finish.

When the verification is complete, the status in the Polyspace Queue
Manager Interface changes from running to completed.

3-10

Launching Server Verification from Project Manager

E PolySpace Queue Manager Interface
Operations Help
IO | Author Application Results folder CPU(Statuz | Date

wour_name Example_Project C:Apolyzpace_projectiresults anze zompletec (008,

Removing Verification Results from the Server

At the end of a server verification, the server automatically downloads
verification results to the results folder specified in the project. You do not
need to manually download your results.

Note You can manually download verification results to another location on
your client system, or to other client systems.

Verification results remain on the server until you remove them. Once your
results have been downloaded to the client, you can remove them from the
server queue.

To remove your results from the server:

1 In the Polyspace Queue Manager Interface, right-click the verification, and
select Remove From Queue. A dialog box opens requiring confirmation
that you want to remove the verification from the queue.

2 Click Yes.

Note To download the results and remove the verification from the queue,
right-click the verification and select Download Results And Remove
From Queue. If you download results before the verification is complete,
you get partial results and the verification continues.

3 Select Operations > Exit to close the Polyspace Queue Manager Interface.

3-11

3 Running a Verification

3-12

Once the results are on your client, you can review them using the Run-Time
Checks perspective. You review the results from the verification in Chapter
4, “Reviewing Verification Results”.

Troubleshooting a Failed Verification

When you see a message that the verification failed, it indicates that
Polyspace software could not perform the verification. The following sections
present some possible reasons for a failed verification.

Hardware Does Not Meet Requirements

The verification fails if your computer does not have the minimal hardware
requirements. For information about the hardware requirements, see

www.mathworks.com/products/polyspaceclientada/requirements.html.

To determine if this is the cause of the failed verification, search the log for
the message:

Errors found when verifying host configuration.
You can:

e Upgrade your computer to meet the minimal requirements.

¢ Select the Continue with current configuration option in the General
section of the Analysis options and run the verification again.

You Did Not Specify the Location of Included Files

If you see a message in the log, such as the following, either the files are
missing or you did not specify the location of included files.

Verifier found an error in example.adb:23:14: “runtime_error
(spec)" depends on "types (spec)"

For information on how to specify the location of include files, see “Creating a
New Project to Verify an Ada Package” on page 2-7.

http://www.mathworks.com/products/polyspaceclientc/requirements.html

Launching Server Verification from Project Manager

Polyspace Software Cannot Find the Server
If you see the following message in the log, Polyspace software cannot find
the server.

Error: Unknown host :

Polyspace software uses information in the preferences to locate the server.
To find the server information in the preferences:

1 Select Options > Preferences.

2 Select the Server Configuration tab.

PolySpace Preferences ll

i Server configuration | Results folderl Editorsl Tools Menul Review statusesl Assistant conﬂgurationl Miscellaneous | Character encodmgl

~Remote configuration

Mote: Send to PolySpace server option is mandatory when the project contains multitasking options.

The multitasking options will be ignored otherwise.

" Automatically detect the remote server

& Use the following server and port @ |localhost 12427

The server name "localhost" can be used if the server is the local machine.

~Metrics configuration

PolySpace Metrics allows you, through a web browser, to drill down to specific coding rule violations and run-time checks. If you want to
view or classify these items as defects within PolySpace, you click the item. PolySpace opens with the specific item displayed. However,
this requires the downloading of result files from the PolySpace Metrics web interface to a locally accessible folder. On this tab, you
specify how result files are downloaded from the PolySpace Metrics web interface.

If you select this check box, results are downloaded to the folder where the verification was launched. If this launch folder does not exist,
results are downloaded to the location specified in the Folder field.
Otherwise, a file browser allows you to select the download location.

[+ Download results automatically

Folder: IC:\Temp A

Port used to communicate with the PolySpace Metrics web interface.

Port number: 12428

The PolySpace Metrics web interface URL is defined as follow: http://<remoteServer=:<portlumber=.
The remote server can be configured above.

Web server port number: 3080

oK | Apply | Cancel

3-13

3 Running a Verification

By default, Polyspace software automatically finds the server. You can
specify the server by selecting Use the following server and port and
providing the server name and port. For information about setting up a
server, see the Polyspace Installation Guide.

3-14

Using Polyspace® In One Click to Launch Verification

Using Polyspace In One Click to Launch Verification

In this section...

“Overview of Polyspace In One Click” on page 3-15
“Setting the Active Project” on page 3-15

“Sending the Files to Polyspace Software” on page 3-17

Overview of Polyspace In One Click

In a Microsoft Windows environment, Polyspace software provides a
convenient way to streamline your work when you want to verify several
packages using the same set of options. Once you have set up a project file
that has the options you want, you designate that project as the active project,
and then send the source files to Polyspace software for verification. You do
not have to update the project with source file information. This process is
called Polyspace In One Click.

In this part of the tutorial, using Polyspace In One Click, you learn how to:
1 Set the active project.
2 Send source files to Polyspace software for verification.

Setting the Active Project

The active project is the project that Polyspace In One Click uses to verify the
packages that you select. Once you have set an active project, it remains
active until you change the active project. Polyspace software uses the
analysis options from the project; it does not use the source files or results
folder from the project.

To set the active project:

1 Right-click the Polyspace In One Click icon in the taskbar area of your
Windows desktop:

3-15

3 Running a Verification

3-16

The context menu appears.

Set active project »

£ &1 7

PalySpace - Resuks View
PalySpace - Project View
Spooler

Help

Exit

2 Select Set active project > Browse from the menu.

The Please set an active project dialog box appears:

Please set an active project.

Lookin: I@polyspace_pmject j L] £ ERv

2

My Recent
Documents

Desktop

L

My Documents

o
My Computer

<
My Network
Places

includes

sources
Verification_(1)
example_project.cfg

File name: I

Lel Lo
_|:

Files of type: IPonSpace configuration files

3 Navigate to polyspace_project.

4 Select example project.cfg.

Open

Cancel

Using Polyspace® In One Click to Launch Verification

5 Click Open to apply the changes and close the dialog box.

Sending the Files to Polyspace Software

You can send several packages to Polyspace software for verification. For this
tutorial, you send one package, example.adb.

To send example.adb to Polyspace software for verification:
1 Navigate to the folder polyspace project\sources.
2 Select the files example.adb and example.ads.
3 Right-click the file example.adb.
The context menu appears.

4 Select Send To > PolySpace.

Mame = | Size | Type
7KB ADE File
[Open 1KE ADS File
Open with WordPad
&) WinZip 2
[£] Compressed (zipped) Folder
Cut @ Desktop (create shortout)
Copy (# Macromedia FreeHand MX
Create Shortout _ Mail Recipient
Delete [C5) Move to SendTo
Rename
D My Documents
Properties PolySpace k
M 342 Floppy (&)
.. DVD/CD-RW Drive (Z:)

The Polyspace basic settings dialog box appears.

3-17

3 Running a Verification

3-18

B polySpace basic settings [ADA 95 | — |I:I|£|

Settings

Precision |02
Passes |Pass2 (Software Safety Analysis level 2) ¥ |
Results folder |C:RPDIySpace\pulyspace_prujecﬂresuIts ‘

Verification Mode Settings

Main |

Scope

C:\PolySpace\polyspace_projectisources\example.adb
C:\PolySpace'\polyspace_projectisources\example.ads

|0 |+

7 Send to PolySpace Ser () Startl (5 Canoell

5 Make sure that Results folder is polyspace_project.

6 Select the Send to Polyspace Server option if it is not already selected.
7 Leave the default values for the other parameters.

Click Start.

The verification log appears.

Using Polyspace® In One Click to Launch Verification

E C:\polyspace_project\results =10l x|
E= & e -

-= Yerifier found a warning in example.adb:199:07: ™" iz never azzigned a value:l
Stubking unknawen funclions and procedures ...
... Stubbing subprogram body runtime_error.procedure_stub

ff

ff

Ending at: Jul 22, 2008 14:6:17

Uzer time for compile: 1.2real, 1.2u + 0z
Generating remote file

Dane

Uzer time for polyzpace-adals: 2.8real, 2.8u + 03
L]

#2End of PolySpace erifier analysiz

333

Adding the analysis to the queue ..

Transfering the archive to the server ..

Transfer completed.

Analysiz 0o

The analysiz has been gueusd. “ou may followe itz progress using the SF":":”EV-_ILI
4| b

|The analyziz haz been succeszfully done

The compile phase of the verification runs on the client. When the compile
phase completes:
* You see the message:

End of PolySpace Verifier analysis

* A message in the log area tells you that the verification was transferred to
the server and gives you the identification number (Analysis ID) for the
verification. For this verification, the identification number is 1.

e Monitor the verification using the Spooler. For information on using the
Spooler to monitor a verification on a server, see “Monitoring the Progress
of the Verification” on page 3-7.

3-19

3 Running a Verification

e When the verification completes, download the results to
polyspace _project\results. For information on downloading results

from a server to a client, see “Removing Verification Results from the
Server” on page 3-11

You review the results in Chapter 4, “Reviewing Verification Results”.

3-20

Launching Client Verification from Project Manager

Launching Client Verification from Project Manager

In this section...

“Starting the Verification” on page 3-21
“Monitoring the Progress of the Verification” on page 3-22
“Completing Verification” on page 3-23

“Stopping the Verification” on page 3-24

Starting the Verification

For the best performance, run verifications on a server. If the server is busy
or you want to verify a small package, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

To start a verification that runs on a client:

1 Open the project file example project.cfg if it is not already open.

For information about opening a project file, see “Preparing for Verification”
on page 3-4.

2 In the Configuration pane, under Analysis options > General, clear
the Send to Polyspace Server check box.

3 If you see a warning that multitasking is not available when you run
a verification on the client, click OK to continue and close the message
box. This warning only appears when you clear the Send to Polyspace
Server check box.

bR
4 (Click the Run button ﬂ on the Project Manager toolbar.

3-21

3 Running a Verification

5 If you see a caution that Polyspace software will remove existing results
from the results folder, click Yes to continue and close the message dialog
box.

The Output Summary and Progress Monitor windows become active,
allowing you to monitor the progress of the verification

Note If you see the message Verification process failed, click OK and
go to “Troubleshooting a Failed Verification” on page 3-12.

Monitoring the Progress of the Verification

You can monitor the progress of the verification by viewing the progress
monitor and logs at the bottom of the Project Manager perspective.

00:00:03 00:00:14 00:00:20 00:00:14 00:00:18 00:00:13 i

Kl | B
Output Summaryl @ Full Leg | B verification Statistics Progress Monitor

The progress bar highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the corresponding tab. The information appears in the
log display area at the bottom of the Project Manager perspective. Follow the
next steps to view the logs:

1 Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search
field and clicking the left arrow to search backward or the right arrow to
search forward.

3-22

Launching Client Verification from Project Manager

2 Click the Verification Statistics tab to display statistics, such as analysis
options, stubbed functions, and the verification checks performed.

Click the refresh button

to update the display as the verification progresses.

3 Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification.

You can search the full log by entering a search term in the Search in the
log box and clicking the left arrow to search backward or the right arrow to
search forward.

Completing Verification

When the verification finishes, the message Verification Completed
appears at the bottom of the Project Manager window, and the results appear
in the Project Browser.

ALef@| ¢+ ¥
=-{= example_project [Ada 95]
=3 Source

. E-E sources

----- | & example.adb
|5 example.ads
7 Include
- (3 .includes
E_} Verification_(1)
—-=3 Source
£-E5 sources

...... | & example.adb

i ‘| example.ads
B3 Configuration
- [example_project
E|_,1 Result
[ERS¥Result (1) [Verification Completed]
i m RTE_px_example_project_LAST_RESULTS.rte

H {d options

3-23

3 Running a Verification

3-24

In the tutorial Chapter 4, “Reviewing Verification Results”, you open the
Run-Time Checks perspective and review the verification results.

Stopping the Verification

You can stop the verification before it is complete. If you stop the verification,
results are incomplete. If you start another verification, the verification starts
from the beginning.

To stop a verification:

St
1 Click the Stop button M on the Project Manager toolbar.

A warning dialog box opens.

waming x|

@ Lo wou really want to stop the current execution ?

o |

2 Click Yes.

The verification stops and the message Verification process stopped
appears.

3 Click OK to close the Message dialog box.

Note Closing the Polyspace verification environment window does not stop
the verification. To resume display of the verification progress, start the
Polyspace software and open the project.

Reviewing Verification
Results

* “About the Reviewing Verification Results Tutorial” on page 4-2
® “Opening Verification Results” on page 4-3

e “Exploring Run-Time Checks Perspective” on page 4-4

* “Reviewing Results” on page 4-8

® “Reviewing Results in Assistant Mode” on page 4-19

® “Generating Reports of Verification Results” on page 4-25

4 Reviewing Verification Results

4-2

About the Reviewing Verification Results Tutorial

In this section...

“Overview” on page 4-2

“Before You Start” on page 4-2

Overview

In the previous tutorial, Chapter 3, “Running a Verification”, you completed
a verification of the package example.adb. In this tutorial, you explore the
verification results.

The Polyspace verification environment contains a Run-Time Checks
perspective that you use to review results. In this tutorial, you learn:
1 How to use the Run-Time Checks perspective, including how to:
® Open the Run-Time Checks perspective and view verification results.
e Explore results in expert mode.
® Explore results in assistant mode.

® Generate reports.

2 How to interpret the color-coding that Polyspace software uses to identify
the severity of an error.

3 How to find the location of an error in the source code.

Before You Start

Before starting this tutorial, complete the tutorial Chapter 3, “Running a
Verification”. In this tutorial, you use the verification results stored in this
file:

polyspace_project\Verification_(1)\Result_(1)\RTE_px_example_project_
LAST_RESULTS.rte

Opening Verification Results

Opening Verification Results

In this section...

“Opening Run-Time Checks Perspective” on page 4-3

“Opening Verification Results” on page 4-3

Opening Run-Time Checks Perspective

Use the Run-Time Checks perspective to review verification results. To open
the Run-Time Checks perspective, on the Polyspace verification environment

) ~L Run-Time Checks |
toolbar, click the Run Time Checks button .

Opening Verification Results
To open the verification results:

1 Select File > Open Result.

2 In the Please select a file dialog box, navigate to
polyspace _project\Verification (1)\Result (1) and select the file
RTE_px_example_project LAST_RESULTS.rte.

3 Click Open.

The results appear in the Run-Time Checks perspective.

4-3

Reviewing Verification Results

Exploring Run-Time Checks Perspective

In this section...

“Overview” on page 4-4

“Reviewing Procedural Entities” on page 4-

5

Overview
The Run-Time Checks perspective looks like this.

Selected check

Coding review

Polyspace - C:\ADA-R2011a-I5\Examples\Demo_Ada\Verification_1\Result_1\RTE_px_Demo_Ada LAST RESULTS.rte

ool s a
EET N e

o 1oz 3

Fle Edt Run Review Options Window Help

% 9|

B | Bl | Sy | r review progress Count | Progress
aced: it [example.adb / PROCEDURE_ZDY / line 45 / column 30 || [Red 2BV justified / to justify /1 0
fincedallomne- W 1) eSS [y ple.adb / 2oV / / Red justified / to justity /12 0
| Dama_pdz I e s Procedure_Stub(fleat(y) J float(x)):; -- x is equal to zero | Gray justified / to justify 0/27 0
BA0A 1 o |mrangeju5nﬂed/m justify 0/23 [
- EKDATA 1 | = Classification Status Justified Comment [Softvara reliability indicator 192/254 75
- PKDATASSPEC 14 L” LI r
[l FKTASKING 12 24| 19
Error @ flost division by zero occurs
B-FRUTIL 1z o ‘I r 4 4 Check Details | - Expanded Source Code | @ Review Statistics
- PRUTILSSFEC i = -
B-RANDOM 1 . XS
RANDCMSSFEC 1 example.adb
E s |1 2
o 36 procedure Procedure_zdv is
1 e 3 I Ee P RUNTIME_ERROR PROCED] 45
1]2 2 Ly ¥ ¢ integer := 10; (=] 4 RUNTIME_ERRORMAINRTE[211
e . 41 Begin
x 4z for i in -2..2 leop
' » ||® ERREAE]
; . 44 end loop:
. . 45 Procedure_Stub(£loatiy) / £loat{x)); -- ¥ iz equal to zers
. . '; 46 end Procedure_zdv:
- ~) - a7
EE-NON_INFINITE B a8 -- Here we demonstrate PolySpace Verifier's ability to trace ﬂ
EROCEMBETSILE x a9 —— dynamic arithmetic properties across a recursion loop. PHDATA SCALE
-7 EDURE_ZD\ 1 5 j_l 50 _ PKTASKING CURRENT_DATA
‘I | 51 -- The main function Recursipni) takes a parameter, increments it, PKTASKING. TREGULATE TMP [
{,g, Run-Time Checki J . Assistant Checks| | 52 -- then divides by it. This|semquence of actions leops through LI 1| >
‘ pois Demo_Ada Source file: example.adb RUNTIME_ERROR.PROCEDURE_STUB Line: 26 Column: 3 |
Pracedural entities .
Source code Variables Call tree

Exploring Run-Time Checks Perspective

The Run-Time Checks perspective has six sections below the toolbar. Each
section provides a different view of the results. The following table describes

these views.

This view...

Displays...

Procedural entities

Diagnostics (checks) for each file and
function in the project

Source code

Source code for a selected check in
the procedural entities view

Coding review

Statistics about the review progress
for checks with the same type and
category as the selected check

Selected check

Details about the selected check

Variables

Information about the global
variables declared in the source code

Note The file that you use in
this tutorial does not have global
variables.

Call tree

Tree structure of function calls

You can resize or hide any of these sections. You learn more about the
Run-Time Checks perspective later in this tutorial.

Reviewing Procedural Entities

The procedural entities view, on the left side of the Run-Time Checks
perspective, displays a table with information about the diagnostics for each
file in the project. The procedural entities view is also called the Run-Time
Checks view. When you first open the results file from the verification of
example.adb, you see the following procedural entities view.

4-5

4 Reviewing Verification Results

4-6

%| ¥ |~

Procedural entities x| #|~

kg

RTE
-

EI-RUNTIME_ERROR 7|7 cl
- RUNTIME_ERRORSEFEC
[-SENSITIVITY

If you place the cursor over Procedural entities and right-click, you can
select other columns to display, for example, Classification.

v %

% | v

RTE
T 4
Procedural entitiae— L @ [ae [=1 I
Procedural entities
£ ADA B Red checks
EMODESCTOP | @ Gray checks
HDATA & o h |<5
T range checl
unTivE_srror | B Green checks

UNTIME_ERRORS Line
[E-SENSITIVITY

Column
Selectivity
Defails
Justified
Comments
Classffication
Status

The package RUNTIME_ERROR is red because its contains at least one definite
run-time error. Polyspace software assigns each package the color of the
most severe error found in that package. Note that the other entities
displayed for the example project are simply black. This indicates that they
contain specifications that were used for the analysis. The first column of
the Procedural entities view names the procedural entity (the package or
function). The following table describes some of the other columns in the
procedural entities view.

Exploring Run-Time Checks Perspective

Column Indicates

Heading

| - I Number of red checks (operations where an error always
- occurs)

Number of gray checks (unreachable code)

Number of orange checks (warnings for operations where
an error might occur)

Number of green checks (operations where an error never
occurs)

Selectivity of the verification (percentage of checks that are
not orange)
This is an indication of the level of proof.

e | | | 1|1

Tip If you see three dots in place of a heading, J, resize the column until you
see the heading. Resize the procedural entities view to see additional columns.

What you select in the procedural entities view determines what is displayed
in the other views. In the following examples, you learn how to use the views
and how they interact.

4-7

4 Reviewing Verification Results

Reviewing Results

In this section...

“Using Review Assistant” on page 4-8
“Reviewing All Checks” on page 4-8
“Reviewing Example Checks” on page 4-12

“Filtering Checks” on page 4-15

Using Review Assistant

You can use the review Assistant on the Run-Time Checks toolbar to facilitate
your review of run-time checks.

Use the Assistant slider to select a mode (1, 2, or 3). Each mode corresponds
to a set of criteria specified by a configuration set. By default, when you open
a results file, the software opens the Run-Time Checks perspective with the
slide at 1 and the Methodology for Ada configuration selected.

o T2 2 [methodology for Ads -|

Polyspace software uses the configuration set to choose checks for review. You
can create new configuration sets by using the Assistant configuration

tab in the Polyspace Preferences dialog box. For more information, see
“Reviewing Results in Assistant Mode” on page 4-19.

To review all run-time checks, move the Assistant slider to Off . See
“Reviewing All Checks” on page 4-8.

For

Reviewing All Checks

In this part of the tutorial, you learn how to use the Run-Time Checks
perspective views to examine checks from a verification. This part of the
tutorial covers:

Reviewing Results

e “Selecting a Check to Review” on page 4-9
® “Displaying the Calling Sequence” on page 4-11

* “Tracking Review Progress” on page 4-11

Note To see all checks in the procedural entities view, move the Assistant
slider to Off. See “Using Review Assistant” on page 4-8.

Selecting a Check to Review
In the procedural entities view, RUNTIME_ERROR is red, indicating that this
package has at least one red check. To review a red check in RUNTIME_ERROR:

1 In the procedural entities view, expand RUNTIME_ERROR.

2 Expand the red function SQUARE_ROOT.

A color-coded list of the checks performed on SQUARE_ROOT appears:

B oue oot

..... o MIVL.

NCF 4
Each item in the list of checks has an acronym that identifies the type of
check and a number. For example, in EXCP.4, EXCP stands for Arithmetic
Exception. For more information about different types of checks, see

“Check Descriptions” in the Polyspace Client/Server for Ada User’s Guide.

3 Click on the red check EXCP. 4.

4-9

Reviewing Verification Results

ool

in "example_adb” line 164 column 15

example.adb / SQUARE_ROOT / line 164 / column 15 a || [Source code :
X — zamma := =sgrt(Beta -- alwa
Gamma := sgrt(Betz); -- always sgrt(negative numbe
Classification Status Justified ¢ HError : fleat argument of SQRT is not
- i -r =
4| | ’ <] | i3
v Review Details | JC! References | -~ Check Details| = Expanded .. | Review Stat.. |
=5 cource e
example.adb
157 Beta : Long Float:
158 procedure Sgquare Foot is b RANDOM.RANDOMSS
159 Llpha ¢ Float := Randowm. random; } RUNTIME_ERROR. SQUARE
160 Gamma : long_float: b ADA MUMERICS ALX.SQRT
161 begin
162 Square Root_conv (4lpha, Eeta):
163 Eeta := Eeta - 0.75;
164 Gamma := SgECiEeta): -- always sqrtinegative number)
165 end Square FRoot;
l&6
187
168 -- Here we demonstrate Polyipace Verifier's ability to ---RUNTIME_ERROR.BETA
169 -- identify unreachable sections of code due to the
170 -- walue constraints placed on the wariahles.

17

<]

nnnnn Avrar Theammolnd e Tede 5o

i

I

You see the section of source code where this error occurs, and details
about the check.

In Review Details, you can:

¢ (lassify the run-time check as a defect. Select a category from the
Classification drop-down list, for example, High.

® Assign a status, for example, Fix. This action indicates to Polyspace
that you have reviewed the check

¢ Justify the check. For example, if you classified the check as Not a
defect, you could select the Justified check box to indicate that the
check is justified.

¢ Enter remarks in the Comment field, for example, defect or justification
information.

4-10

Reviewing Results

Displaying the Calling Sequence
You can display the calling sequence that leads to the code associated with a
check. To see the calling sequence for the red EXCP.5 check in SQUARE_ROOT:

1 In the procedural entities view, expand SQUARE_ROOT.

2 Click on the red check EXCP.5.

E
3 In the Review Details toolbar, click the call graph button. i.

A window displays the call graph.

example_proje...RE_ROOT.EXCP.5 | 4> @

sxample.adb sxample.adb example.adb

© O O

RUMTIME_ERROR MAIMRTE RUMNTIME_ERROR.SQUARE _ROOT EXCP.5

The code associated with EXCP. 5 is in SQUARE_ROOT. The function MAINRTE
calls SQUARE_ROOT.

Tracking Review Progress

Review Statistics allows you to keep track of the checks that you have
reviewed.

7% Review Statistics

Coding review progress Count Frogress
Red NTL justified / to justify 0/2 0
Red justified / to justify 0/12 0
Gray justified / to justify 0/27 0
Orange justified / to justify 0/23 0
Software reliability indicator 192/254 75

- Check Details | - Expanded Source Code lﬁ Review Statistics

4-11

4 Reviewing Verification Results

4-12

The Count column displays a ratio and the Progress column displays the
equivalent percentage. The first row displays the ratio of justified checks
to the total number of checks that have the same color and category as the
current check. In this example, it displays the ratio of justified red NTL
checks to total red NTL errors in the project.

The second, third, and fourth rows displays the ratio of justified checks to
total checks for red, gray, and orange checks respectively. The fifth row
displays the ratio of the number of green checks to the total number of checks,
providing an indicator of the reliability of the software.

Reviewing Example Checks
In this part of the tutorial, you learn about other types and categories of

errors by reviewing the following checks in example.adb:
e “Example: Unreachable Code” on page 4-12
e “Example: A Function with No Errors” on page 4-13

e “Example: Division by Zero” on page 4-14

Example: Unreachable Code

Unreachable code is code that never executes. Polyspace software displays
unreachable code in gray. In the following steps, you will look at an example
of unreachable code.

1 Under Procedural Entities, expand UNREACHABLE_CODE and click on the
gray ZDV.6.

The source code for this function displays in the source code view.

Reviewing Results

179
130
131
1sz
133
154
135
136
157
135
139
120
191
19z
1393
194

1N

—Ioix

=
-- Here we demonstrate Polyipace Verifier's ability to
-- jidentify unreachable zections of code due to the
-- walue constraints placed on the wvariahles,

procedure Tnreachable Code iz

X i integer := Randow.random;
¥ ¢ integer := Random.random;
Z @ Integer:
begin
if (=% = w) then
=X ¥
if (x < 0) then
Z=u J1: _J
end if;
end if;

end Tnreachahle Code;

2 Examine the source code.

At line 190, the code Z := x / Y; is never reached because the condition x
< 0 1is always false.

Example: A Function with No Errors

In the following example, Polyspace software determines, in code with a large
number of iterations, that a loop terminates and a variable does not overflow:

1 In Procedural entities, click on the green NON_INFINITE_LOOP function.

The source code for this function is displayed in the source code view.

4-13

4 Reviewing Verification Results

110
111
112
113
114
115
1lla
117
115
119
120
121
122
123
124
125

]

o4 example.adb

=10l x|

-- Correct operation is demomonstrated because:
-- 1) cur := cur + Z is showm Co newver gererate an aowverflow
-- 2] the loop iz not infinite
big : constant integer := 1073741821; -- Z%%30-3
procedure Non_Infinite_Loop (X : out Integer) is
cur : Integer :=0;
begin
A= 0;
laop
exit when % > big:
cur := cur + Z;

end loop:
A 1= Cur / 100;
end Hon_Infinite_Loop:

Al

-

2 Examine the source code. The variable cur never overflows because the

loop at line 117 terminates before cur can overflow.

Example: Division by Zero
In the following example, Polyspace software detects a potential division

by zero:

1 In Procedural entities, expand RECURSION.

The source code for this function is displayed in the source code view.

4-14

Reviewing Results

55
k14
57
58
59
a0
6l
62
63
64
(i)
[i1:]
67
|15
73]
7
71
TE
73
74
75

Kij

e example.adb

=0l x|

-l

-- If the initial walue passed to Fecursion()] is negatiwe, then

-- the recur=ziwve loop will at =Zome polht attempt a diwi=zion
-- b¥ =zero.
procedure Becursion (depth : in out integer):

procedure Recursive_gZ (depth : in out integer) is
begin

Fecur=zion (depth): -- call to Recursziwe procedure
end Recursive Z;

-- Becursion may lead to zero division
procedure Recursion (depth : in out integer) is
advance @ float:
begin
depth := depth + 1;

advance := float{l)/float{depth); -- potential =zero division

if depth < 5 then
Fecursive_Z (depth):
advance := float{l)/float(depth);
end if;
end Recursion;

2 Examine the RECURSION function.

When RECURSION is called with depth less than zero, the code at line 70

will result in division by zero. The orange color indicates that this is a

potential error (depending on the value of depth).

Filtering Checks
You can filter the checks that you see in the Run-Time Checks perspective so
that you can focus on certain checks. Polyspace software allows you to filter

your results in several ways. You can filter by:

® (Check category (ZDV, IDP, NIP, etc.)

® Color of check (gray, orange, green)

4-15

4 Reviewing Verification Results

4-16

e Justified or unjustified
e (lassification

® Status

To filter checks, select one of the filter buttons in the Run-Time checks toolbar.

RTE C 5
¥ % %%

Tip The tooltip for a filter button tells you what filter the button is for.

Example: Filtering NIVL Checks

You can use an RTE filter to hide a given check category, such as NIVL. When
a filter is enabled, you do not see that check category.

To filter NIVL checks:

1 Expand PROCEDURE_ZDV.

PROCEDURE_ZDV has seven checks: five are green, one is gray, and one is red.

RTE
2 Click the RTE filter icon ﬂ

3 Clear the NIVL check box.

Reviewing Results

LI AN
Display Al
Hide Al
NIVL

B ZDV

B EXCP

¥ S-OVFL

The software hides the NIVL check for PROCEDURE_ZDV.

4 Select the NIVL option to redisplay the NIVL check.

Note When you filter a check category, red checks of that category are not
hidden. For example, if you filter ZDV checks, you still see ZDV.7 under
PROCEDURE_ZDV.

Example: Filtering Green Checks
You can use a color filter to hide checks of a certain color.
To filter green checks:

1 Expand PROCEDURE_ZDV.

PROCEDURE_ZDV has eight checks: six are green, one is gray, and one is red.

4-17

4 Reviewin

g Verification Results

4-18

E}-FROCEDURE_ZDV
----- wF NIVL.D

+
2 Click the Color filter icon ﬂ.
3 Clear Green Checks.

“" Run-Time Checks

R:I';F .:r B"'Y I::r 5,7

P Gray Checks
COrange Checks
Green Checks

Errors in non executable procedures
...n.e ¥ Orange not containing additional information

The software hides the green checks.

Reviewing Results in Assistant Mode

Reviewing Results in Assistant Mode

In this section...

“What Is Assistant Mode?” on page 4-19

“Switching to Assistant Mode” on page 4-19

“Selecting the Methodology and Criterion Level” on page 4-20
“Exploring Methodology for Ada” on page 4-20

“Reviewing Checks” on page 4-22

“Defining a Custom Methodology” on page 4-23

What Is Assistant Mode?

In assistant mode, Polyspace software chooses the checks for you to review
and the order in which you review them. Polyspace software presents checks
to you in this order:

1 All red checks
2 All blocks of gray checks (the first check in each unreachable function)
3 Orange checks according to the selected methodology and criterion level

You will learn about methodologies and criterion levels in “Selecting the
Methodology and Criterion Level” on page 4-20.

Switching to Assistant Mode

To switch to assistant mode:

e Move the Assistant slider to 1 in the Run-Time Checks toolbar.

The toolbar displays controls specific to assistant mode.

s 2

o Methodology for Ada (7| B € B BE - E

4-19

4 Reviewing Verification Results

4-20

The controls for this mode include:

* A menu for selecting the review methodology for orange checks.
e A glider for selecting the criterion level within that methodology.

¢ Arrows for navigating through the reviews.

Selecting the Methodology and Criterion Level

A methodology is a named configuration that defines the number of orange
checks, by category, that you review in assistant mode. Each methodology
has three criterion levels. Each level specifies the number of orange checks
for a given category. The levels correspond to different development phases
that have different review requirements. To select the methodology and level

for this tutorial:

1 Select Methodology for Ada from the methodology menu.

Ihﬂethndnlngyfnr hfadel Based Designedll
Methodology for Ada

Methodalogy for ©
Methodology for C++

Methodalogy for Model Based Designed

2 If the level slider is not already at 1, move the slider to level 1.

Exploring Methodology for Ada
In this part of the tutorial, you examine the configuration for Methodology
for Ada. To begin:

1 Select Options > Preferences.
The Polyspace Preferences dialog box appears.
2 Select the Assistant configuration tab.

The configuration for Methodology for Ada appears.

Reviewing Results in Assistant Mode

On the right side of the dialog box, a table shows the number of orange
checks that you review for a given criterion and check category.

atuses ; Assistant conﬁgurationél Miscellaneous | Character encoding

~Mumber of checks to review
Criterion 1 Criterion 2 Criterion 3
rCommon
v 10 20 ALL
MNIVL AUTO 50 ALL
S-OVFL AUTO 50 ALL
COR AUTO 10 10
NIV AUTO 3 10
F-OVFL 3 10 20
ASRT AUTO 3 20

For example, the table specifies that you review ten orange ZDV checks
when you select criterion 1. The number of checks increases as you move
from criterion 1 to criterion 3, reflecting the changing review requirements

as you move through the development process.

In the lower-left part of the dialog box, the section Review threshold
criterion contains text that appears in the tooltip for the Assistant slider

on the Run-Time Checks toolbar.

—Configuration zet

hethodology for Ada

=l

Criteriar 1
Criterion 2

Criterion 3

~Review threshold criterion

Fresh code

Init tested

Code review

For the configuration Methodology for Ada, the criterion names are:

4-21

4 Reviewing Verification Results

4-22

Criterion Name in the Tooltip
1 Fresh code

2 Unit tested

3 Code review

These names correspond to phases of the development process.

3 Click OK to close the dialog box.

Reviewing Checks

In assistant mode, you review checks in the order in which Polyspace software
presents them:

1 All red checks
2 All blocks of gray checks (the first check in each unreachable function)
3 Orange checks according to the selected methodology and criterion level

Earlier in this tutorial, you selected Methodology for Ada, criterion 1. In this
part of the tutorial, you continue to review the checks for example.adb using
this methodology and criterion level. To navigate through these checks:

b
1 Click the forward arrow _J

The software displays ZDV.7 as the current check.

Check

1 |RUNTIME_ERROR.SQUARE_ROOT.EXCP.5

1 |RUNTIME_ERROR.RECURSION_CALLER.NTC.1
1 |RUNTIME_ERROR.MAINRTE.NTC.1

1 |RUNTIME_ERROR.MAINRTE.NTC.2
I
I

|RUNTIME_ERROR.MAINRTE.NTC.3
|RUNTIME_ERROR.INFINITE_LOOP.NTL.2

Reviewing Results in Assistant Mode

The source code view displays the source for this check. In Review Details,
you see information about this check and you can review this check.

Note You can display the calling sequence and track review progress as
you did in “Reviewing Results” on page 4-8.

2 Continue to click the forward arrow until you have reviewed all the checks.

After the last check, a dialog box appears asking if you want to start again
from the first check.

Wrapping search il

@ End of the set of checks under review.
Do wou want to skart again from the First check?

3 Click No.

Defining a Custom Methodology

You cannot change the predefined methodologies, such as Methodology for
Ada, but you can define your own methodology. In this part of the tutorial,
you learn how to create and use your own methodology.

The methodology that you create is the Methodology for Ada with one change:
1 Select Option > Preferences.
The Polyspace Preferences dialog box opens.

2 Select the Assistant configuration tab.

3 Select Add a set from the Configuration set drop-down list.

4-23

4 Reviewing Verification Results

4-24

4 In the Create a new set dialog box, enter My methodology and click
Enter to close the dialog box.

5 Under the Criterion 1 column, enter the number 1 next to ZDV . This tells
Polyspace software to select up to one orange ZDV for review.

6 Click OK to save the methodology and close the dialog box.
To use My methodology:

1 Select My methodology from the methodology menu.

2 If the level slider is not already at 1, move the slider to level 1.

3 Click the forward arrow L] to review the checks.

With this methodology at criterion 1, the only orange check you review
is the orange ZDV.5 in RECURSION.

E @ I. |o'ﬂ'_| 2 3 IMymeth::-d:}I::-gy ;I = L

Check L\},
RUNTIME_ERROR.PROCEDURE_ZDV.ZDV.7
RUNTIME_ERROR.SQUARE_ROOT.EXCF.5
RUNTIME_ERROR.RECURSION_CALLER.MTC.1
RUNTIME_ERROR.MAINETE.NTC.1
RUNTIME_ERROR.MAINETE.NTC.2
RUNTIME_ERROR.MAINETE.NTC.3
RUNTIME_ERROR.INFINITE_LOOP.NTL.2
RUNTIME_ERROR.PROCEDURE_ZDV.UOVFL.6
RUNTIME_ERROR.MYABS.UNR.2
RUNTIME_ERROR.UNREACHABLE_CODE.UNR.4
RUNTIME_ERROR.RECURSION.ZDV.5

| 2| 2| X

Generating Reports of Verification Results

Generating Reports of Verification Results

In this section...

“Polyspace Report Generator Overview” on page 4-25

“Generating Report for example.adb” on page 4-26

Polyspace Report Generator Overview

The Polyspace Report Generator allows you to generate reports about your
verification results, using predefined report templates.

The Polyspace Report Generator provides the following report templates:

¢ Coding Rules Report — Provides information about compliance with
MISRA-C Coding Rules, as well as Polyspace configuration settings for
the verification.

¢ Developer Report — Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
Polyspace configuration settings for the verification.

®* Developer with Green Checks Report — Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

¢ Quality Report — Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and Polyspace configuration settings for
the verification.

¢ Software Quality Objectives Report — Provides information on
software quality objectives (SQO), including code metrics, code verification
(run-time checks), and configuration settings for the verification. The code
metrics section provides the same information as the Code Metrics view of
the Polyspace Metrics web interface.

The Polyspace Report Generator allows you to generate verification reports in
the following formats:

e HTML
e PDF

4-25

4 Reviewing Verification Results

e RTF
e Microsoft Word
e XML

Note Microsoft Word format is not available on UNIX platforms. RTF format
is used instead.

Generating Report for example.adb

You can generate reports for any verification results using the Polyspace
Report Generator.

To generate a verification report:
1 Open your verification results.
2 Select Run > Run Report > Run Report.

The Run Report dialog box opens.

Run Report ﬁl

~Select Report Template

C:\PolySpace\PolySpace_Commeon\ReportGenerator\templates'\CodingRules.rpt -

C:\PolySpace\PolySpace_Common\ReportGenerator\templates\Developer.rpt

C:\PolySpace\PolySpace_Commeon\ReportGenerator\templates\DeveloperReview.rpt

C:\PolySpace\PolySpace_Common\ReportGenerator\templates\Developer_WithGreenChe

C:\PolySpace\PolySpace_Common\ReportGenerator\templates\Quality.rpt

C:1POIySpace\PonSpace_Comm0n\Repor‘tGenerator\tempIates\SoftwareQuaIiivaiective hd |
3

4

Browse... |

~Select Report Format

Qutput folder |C:\PUIySpace\pUIyspace_prUject\Veriﬂcatiun_(l]\Resu\t_(l]\PUIySpace-Duc

Qutput format I RTF 'I

Run Report | Cancel |

4-26

Generating Reports of Verification Results

3 In the Select Report Template section, select Developer.rpt.

4 In Output folder, specify a folder, for example,
polyspace_project\Verification_(1)\Result_(1)\PolySpace-Doc.

5 Select, for example, RTF from the Output format drop-down list.
6 Click Run Report.

The software creates the specified report. When report generation is
complete, the report opens.

4-27

4 Reviewing Verification Results

4-28

A

active project
definition 3-15
setting 3-15
analysis options 2-11
ANSI compliance 3-6
assistant mode
criterion 4-20
custom methodology 4-23
methodology 4-20
methodology for Ada 4-20
overview 4-19
reviewing checks 4-22
selection 4-19
use 4-19 4-22

C

call graph 4-11
call tree view 4-4
calling sequence 4-11
cfg. See configuration file
client 1-5 3-2
installation 1-9
verification on 3-21
coding review progress view 4-4 4-11
Coding Rules perspective 1-5
color-coding of verification results 1-2 to 1-3 4-5
compile log
Project Manager 3-7 3-22
Spooler 3-8
compile phase 3-6
compliance
ANSI 3-6
configuration file
definition 2-3
custom methodology
definition 4-23

D

desktop file
definition 2-3
division by zero
example 4-14
downloading
results 3-11
dsk. See desktop file

expert mode
filters 4-15
overview 4-8
use 4-8

F

files
includes 2-9
source 2-9
filters 4-15
folders
includes 2-9
sources 2-9

H

hardware requirements 3-12
help
accessing 1-13

installation
Polyspace Client for Ada 1-9
Polyspace products 1-9
Polyspace Server for Ada 1-9

Index-1

L

licenses
obtaining 1-9
logs
compile
Project Manager 3-7 3-22
Spooler 3-8
full
Project Manager 3-7 3-22
Spooler 3-8
stats
Project Manager 3-7 3-22
Spooler 3-8
viewing
Project Manager 3-7 3-22
Spooler 3-8

M
methodology for Ada 4-20

P

Polyspace Client for Ada
installation 1-9
license 1-9

Polyspace In One Click
active project 3-15
overview 3-15
sending files to Polyspace software 3-17
starting verification 3-17
use 3-15

Polyspace products for Ada
components 1-5
installation 1-9
licenses 1-9
overview 1-2
related products 1-14
user interface 1-5

Index-2

workflow 1-10

Polyspace Queue Manager Interface. See Spooler

Polyspace Server for Ada
installation 1-9
license 1-9
Polyspace verification environment
opening 2-4
preferences
assistant configuration 4-20
Project Manager perspective
default server mode 3-6
server detection 3-13
procedural entities view 4-4
product overview 1-2
progress bar
Project Manager window 3-7 3-22
project
creation 2-3 2-7
definition 2-3
file types
configuration file 2-3
desktop file 2-3
folders
includes 2-3
results 2-3
sources 2-3
opening 3-4
saving 2-13
Project Manager
monitoring verification progress 3-7 3-22
starting verification on client 3-21
starting verification on server 3-6
viewing logs 3-7 3-22
window 2-4
overview 2-4
progress bar 3-7 3-22
Project Manager perspective 1-5
stopping 3-23

Index

R
related products 1-14

Polyspace products for linking to Models 1-14
Polyspace products for verifying C code 1-14

Polyspace products for verifying C++
code 1-14
reports
generation 4-25
results
downloading from server 3-11
opening 4-3
report generation 4-25
reviewing 4-1
rte view. See procedural entities view
Run-time checks perspective
call tree view 4-4
coding review progress view 4-4
procedural entities view 4-4
selected check view 4-4
source code view 4-4
variables view 4-4
Run-Time Checks perspective 1-5
opening 4-3
window
overview 4-4

S

selected check view 4-4

server 1-5 3-2
detection 3-13
information in preferences 3-13
installation 1-9 3-13
verification on 3-6

source code view 4-4

Spooler 1-5
monitoring verification progress 3-8
removing verification from queue 3-11
use 3-8
viewing log 3-8

T

troubleshooting failed verification 3-12

U

unreachable code

\"

example 4-12

variables view 4-4
verification

W

Ada code 1-2

C code 1-14

C++ code 1-14

client 3-2

compile phase 3-6

failed 3-12

monitoring progress
Project Manager 3-7 3-22
Spooler 3-8

phases 3-6

results
color-coding 1-2 to 1-3
opening 4-3
report generation 4-25
reviewing 4-1

running 3-2

running on client 3-21

running on server 3-6

starting
from Polyspace In One Click 3-2 3-17
from Project Manager 3-2 3-21
from Project Manager perspective 3-6

stopping 3-24

troubleshooting 3-12

workflow

Index-3

Index

basic 1-10 in this guide 1-11

Index-4

	toc
	Introduction to Polyspace Products for Verifying Ada Code
	Product Overview
	Overview of Polyspace Verification
	The Value of Polyspace Verification
	Ensure Software Reliability
	Decrease Development Time
	Improve Development Process

	Product Components
	Polyspace Products for Ada
	Polyspace Verification Environment
	Project Manager Perspective
	Run-Time Checks Perspective

	Other Polyspace Components
	Polyspace Queue Manager Interface (Polyspace Spooler)
	Polyspace in One Click
	Polyspace Metrics Web Interface

	Installing Polyspace Products
	Finding the Installation Instructions
	Obtaining Licenses for Polyspace Client for Ada and Polyspace Se

	Working with Polyspace Software
	Basic Workflow
	The Workflow in This Guide

	Learning More
	Product Help
	MathWorks Online

	Related Products
	Polyspace Products for Verifying C/C++ Code
	Polyspace Products for Linking to Models

	Setting Up a Polyspace Project
	About the Setting Up a Project Tutorial
	Overview
	Example Files

	Creating a New Project
	What Is a Project?
	Preparing Project Folders
	Opening the Polyspace Verification Environment
	Creating a New Project to Verify an Ada Package
	Opening a New project
	Specifying the Source Files and Include Folders
	Specifying the Analysis Options
	Specifying Source Files to Verify
	Saving the Project

	Running a Verification
	About This Tutorial
	Overview
	Before You Start

	Preparing for Verification
	Opening the Project
	Specifying Source Files to Verify

	Launching Server Verification from Project Manager
	Starting the Verification
	Monitoring the Progress of the Verification
	Monitoring Progress Using Project Manager
	Monitoring Progress Using Queue Manager

	Removing Verification Results from the Server
	Troubleshooting a Failed Verification
	Hardware Does Not Meet Requirements
	You Did Not Specify the Location of Included Files
	Polyspace Software Cannot Find the Server

	Using Polyspace In One Click to Launch Verification
	Overview of Polyspace In One Click
	Setting the Active Project
	Sending the Files to Polyspace Software

	Launching Client Verification from Project Manager
	Starting the Verification
	Monitoring the Progress of the Verification
	Completing Verification
	Stopping the Verification

	Reviewing Verification Results
	About the Reviewing Verification Results Tutorial
	Overview
	Before You Start

	Opening Verification Results
	Opening Run-Time Checks Perspective
	Opening Verification Results

	Exploring Run-Time Checks Perspective
	Overview
	Reviewing Procedural Entities

	Reviewing Results
	Using Review Assistant
	Reviewing All Checks
	Selecting a Check to Review
	Displaying the Calling Sequence
	Tracking Review Progress

	Reviewing Example Checks
	Example: Unreachable Code
	Example: A Function with No Errors
	Example: Division by Zero

	Filtering Checks
	Example: Filtering NIVL Checks
	Example: Filtering Green Checks

	Reviewing Results in Assistant Mode
	What Is Assistant Mode?
	Switching to Assistant Mode
	Selecting the Methodology and Criterion Level
	Exploring Methodology for Ada
	Reviewing Checks
	Defining a Custom Methodology

	Generating Reports of Verification Results
	Polyspace Report Generator Overview
	Generating Report for example.adb

	Index

